Skip to main content

Manage Prompt with the SDK

In this guide, we'll explore all actions performed through the SDK: creating variants, committing changes, deploying changes, and fetching configurations. For a simpler introduction, please refer to the prompt mangement tutorial.

Before starting, we recommend to get acquainted with how versioning works in Agenta. You can find more details on the concepts page, or read the quick summary below.

Versioning in Agenta

Agenta follows a structure similar to git for prompt versioning. Instead of a single commit history, you can create multiple branches—called variants. Each variant represents a distinct approach or solution you're exploring.

To move from experimentation to deployment, Agenta uses environments like development, staging, and production. You can deploy specific versions of your variants to these environments, controlling what gets tested and what goes live.

The workflow of deploying something to production is therefore as follows:

  1. (optionally) Create a new variant (branch)
  2. Commit a change to that variant
  3. Deploy that commit (variant/version) to an environment

Setup

Before using the SDK, you need to initialize it using the ag.init() method.

import agenta as ag

# Initialize the SDK with your API key
os.environment["AGENTA_API_KEY"] = "xxx" # Only needs setting in oss
os.environment["AGENTA_HOST"] = "https://cloud.agenta.ai" # default value no need setting explicitly
ag.init()

Creating a new prompt

Each prompt in agenta is a unique application. Currently creating a prompt is only available in the web UI. To create a new prompt, just click on create a new prompt and select whether it's a chat or completion prompt in the web UI.

Committing changes

Creating a New Variant

To create a new variant, use the VariantManager.create_variant method.


from agenta import Prompt

# Prompt is a pydantic BaseModel, for additional validation
my_prompt = Prompt(
temperature=0.7,
model="gpt-3.5-turbo",
max_tokens=150,
prompt_system="You are an assistant that provides concise answers",
prompt_user="Explain {topic} in simple terms",
top_p=1.0,
frequency_penalty=0.0,
presence_penalty=0.0
)

# Create a new variant
variant = ag.VariantManager.create_variant(
parameters=my_prompt.model_dump(),
app_slug="my-app-slug",
# app_id="my-app-id", # you can also use `app_id`
variant_slug="my-variant-slug",
)

print("Created variant:")
print(variant)

This command will create a new variant and initialize it with the first commit containing the parameters provided

  • Parameters:
    • app_slug: The slug of your application.
    • variant_slug: The slug of the new variant.
    • parameters: A dictionary containing the initial configuration parameters.

Note: If a variant with the same slug and version already exists, the SDK will raise an exception.

Sample Output:

Created variant:
{
'parameters': {
'temperature': 0.7,
'model': 'gpt-3.5-turbo',
'max_tokens': 150,
'prompt_system': 'You are an assistant that provides concise answers.',
'prompt_user': 'Explain {topic} in simple terms.',
'top_p': 1.0,
'frequency_penalty': 0.0,
'presence_penalty': 0.0
},
'app_id': 'my-app-id',
'app_slug': 'my-app-slug',
'variant_id': 'new-variant-id',
'variant_slug': 'my-variant-slug',
'variant_version': 1,
'committed_at': 'current-datetime',
'committed_by': 'my-email-address',
'committed_by_id': 'my-user-id',
}

Committing Changes to a Variant

To save changes to a variant (creating a new version), use the VariantManager.commit_variant method with explicit parameters.

my_prompt2 = Prompt(
temperature=1.0,
model="gpt-4",
max_tokens=150,
prompt_system="You are an assistant that provides concise answers",
prompt_user="Explain {topic} in simple terms",
top_p=1.0,
frequency_penalty=0.0,
presence_penalty=0.0
)

# Commit the new version
variant = ag.VariantManager.commit_variant(
parameters=my_prompt2.model_dump(),
app_slug="my-app-slug",
variant_slug="my-variant-slug",
)

print("Committed new version of variant:")
print(variant)
Immutability

Each commit creates a new version of the variant. Versions are immutable once created.

Sample Output:

Committed new version of variant:
{
'parameters': {
'temperature': 1.0,
'model': 'gpt-4',
'max_tokens': 150,
'prompt_system': 'You are an assistant that provides concise answers.',
'prompt_user': 'Explain {topic} in simple terms.',
'top_p': 1.0,
'frequency_penalty': 0.0,
'presence_penalty': 0.0
}
'app_id': 'my-app-id',
'app_slug': 'my-app-slug',
'variant_id': 'updated-variant-id',
'variant_slug': 'my-variant-slug',
'variant_version': 2,
'committed_at': 'current-datetime',
'committed_by': 'my-email-address',
'committed_by_id': 'my-user-id',
}

Deploying to an Environment

To deploy a variant to an environment, use the DeploymentManager.deploy_variant method with the variant reference and environment_slug: The slug of the environment (development, staging, or production).

# Deploy the variant to the staging environment
deployment = ag.DeploymentManager.deploy_variant(
app_slug="my-app-slug",
# app_id="my-app-id", # you can also use `app_id`
variant_slug="my-variant-slug",
variant_version=None, # Optional: If not provided, deploys the latest version
environment_slug="staging"
)

print("Deployed variant to environment:")
print(deployment)
warning
  • Deploying a variant without specifying a variant_version deploys the latest version.
  • Only predefined environments with slugs development, staging, and production are currently supported.

Sample Output:

Deployed variant to environment:
{
'parameters': {
'temperature': 0.7,
'model': 'gpt-3.5-turbo',
'max_tokens': 150,
'prompt_system': 'You are an assistant that provides concise answers.',
'prompt_user': 'Explain {topic} in simple terms.',
'top_p': 1.0,
'frequency_penalty': 0.0,
'presence_penalty': 0.0
},
'app_id': 'my-app-id',
'app_slug': 'my-app-slug',
'variant_id': 'new-variant-id',
'variant_slug': 'my-variant-slug',
'variant_version': 1,
'environment_id': 'staging-enviroment-id',
'environment_slug': 'staging',
'environment_version': 1,
'deployed_at': 'current-datetime',
'deployed_by': 'my-email-address',
'deployed_by_id': 'my-user-id',
}

Fetching Configurations

You can fetch the configurations from a variant reference (app_slug, variant_slug, variant_version) or an environment reference (app_slug, environment_slug). The default behavior when fetching is to fetch the latest configuration from the production environment. If you don't provide a _version parameter but only a variant_slug or an environment_slug, the SDK will fetch the latest version of the variant from the specified environment/variant.

Default Behavior when fetching

If you don't provide either variant or environment identifiers, the SDK fetches the latest configuration deployed to the production environment.

# Fetch configuration from the latest version in production (default)
config = ag.ConfigManager.get_from_registry(
app_slug="my-app-slug"
# app_id="my-app-id", # you can also use `app_id`
)

print("Fetched configuration from production:")
print(config)

Fetching by Variant Reference

# Fetch configuration by variant
config = ag.ConfigManager.get_from_registry(
app_slug="my-app-slug",
# app_id="my-app-id", # you can also use `app_id`
variant_slug="my-variant-slug",
variant_version=2 # Optional: If not provided, fetches the latest version
)

print("Fetched configuration:")
print(config)

Sample Output:

Fetched configuration:
{
'parameters': {
'temperature': 1.0,
'model': 'gpt-4',
'max_tokens': 150,
'prompt_system': 'You are an assistant that provides concise answers.',
'prompt_user': 'Explain {topic} in simple terms.',
'top_p': 1.0,
'frequency_penalty': 0.0,
'presence_penalty': 0.0
}
'app_id': 'my-app-id',
'app_slug': 'my-app-slug',
'variant_id': 'updated-variant-id',
'variant_slug': 'my-variant-slug',
'variant_version': 2,
'committed_at': 'current-datetime',
'committed_by': 'my-email-address',
'committed_by_id': 'my-user-id',
}

Fetching by Environment Reference

# Fetch the latest configuration from the staging environment
config = ag.ConfigManager.get_from_registry(
app_slug="my-app",
environment_slug="staging"
environment_version=1 # Optional: If not provided, fetches the latest version
)

print("Fetched configuration from staging:")
print(config)

Sample Output:

Fetched configuration from staging:
{
'parameters': {
'temperature': 0.7,
'model': 'gpt-3.5-turbo',
'max_tokens': 150,
'prompt_system': 'You are an assistant that provides concise answers.',
'prompt_user': 'Explain {topic} in simple terms.',
'top_p': 1.0,
'frequency_penalty': 0.0,
'presence_penalty': 0.0
},
'app_id': 'my-app-id',
'app_slug': 'my-app-slug',
'variant_id': 'new-variant-id',
'variant_slug': 'my-variant-slug',
'variant_version': 1,
'environment_id': 'staging-enviroment-id',
'environment_slug': 'staging',
'environment_version': 1,
'deployed_at': 'current-datetime',
'deployed_by': 'my-email-address',
'deployed_by_id': 'my-user-id',
}

Deleting a Variant

To delete a variant, use the VariantManager.delete_variant method.

# Delete a variant
ag.VariantManager.delete_variant(
app_slug="my-app",
# app_id="my-app-id", # you can also use `app_id`
variant_slug="obsolete-variant"
)

print("Variant deleted successfully.")
warning
  • Deleting a variant removes all versions of the variant. This action is irreversible.
  • Attempting to delete a variant that is deployed to an environment will fail.

Listing All Variants

To list all variants of an application, use the VariantManager.list_variants method.

# List all variants
variants = ag.VariantManager.list_variants(
app_slug="my-app"
# app_id="my-app-id", # you can also use `app_id`
)

print("List of variants:")
for variant in variants:
print(variant)

Sample Output:

List of variants:
{
'parameters': {
'temperature': 1.0,
'model': 'gpt-4',
'max_tokens': 150,
'prompt_system': 'You are an assistant that provides concise answers.',
'prompt_user': 'Explain {topic} in simple terms.',
'top_p': 1.0,
'frequency_penalty': 0.0,
'presence_penalty': 0.0
}
'app_id': 'my-app-id',
'app_slug': 'my-app-slug',
'variant_id': 'updated-variant-id',
'variant_slug': 'my-variant-slug',
'variant_version': 2,
'committed_at': 'current-datetime',
'committed_by': 'my-email-address',
'committed_by_id': 'my-user-id',
}
{
'parameters': {
'temperature': 0.5,
'model': 'gpt-3.5-turbo',
'max_tokens': 100,
'prompt_system': 'You are an assistant that provides concise answers.',
'prompt_user': 'Explain {topic} in simple terms.',
'top_p': 1.0,
'frequency_penalty': 0.0,
'presence_penalty': 0.0
}
'app_id': 'my-app-id',
'app_slug': 'my-app-slug',
'variant_id': 'another-variant-id',
'variant_slug': 'another-variant-slug',
'variant_version': 1,
'committed_at': 'another-datetime',
'committed_by': 'another-email-address',
'committed_by_id': 'another-user-id',
}

Fetching a Variant's history

To list all versions for a variant of an application, use the VariantManager.list_variants method.

# List all variants
variants = ag.VariantManager.list_variants(
app_slug="my-app"
# app_id="my-app-id", # you can also use `app_id`
)

print("List of variants:")
for variant in variants:
print(variant)

Sample Output:

List of variants:
{
'parameters': {
'temperature': 1.0,
'model': 'gpt-4',
'max_tokens': 150,
'prompt_system': 'You are an assistant that provides concise answers.',
'prompt_user': 'Explain {topic} in simple terms.',
'top_p': 1.0,
'frequency_penalty': 0.0,
'presence_penalty': 0.0
}
'app_id': 'my-app-id',
'app_slug': 'my-app-slug',
'variant_id': 'updated-variant-id',
'variant_slug': 'my-variant-slug',
'variant_version': 2,
'committed_at': 'current-datetime',
'committed_by': 'my-email-address',
'committed_by_id': 'my-user-id',
}
{
'parameters': {
'temperature': 0.5,
'model': 'gpt-3.5-turbo',
'max_tokens': 100,
'prompt_system': 'You are an assistant that provides concise answers.',
'prompt_user': 'Explain {topic} in simple terms.',
'top_p': 1.0,
'frequency_penalty': 0.0,
'presence_penalty': 0.0
}
'app_id': 'my-app-id',
'app_slug': 'my-app-slug',
'variant_id': 'another-variant-id',
'variant_slug': 'another-variant-slug',
'variant_version': 1,
'committed_at': 'another-datetime',
'committed_by': 'another-email-address',
'committed_by_id': 'another-user-id',
}

Asynchronous Operations

If your application uses asynchronous programming, you can use the async versions of the methods (see the a prefix in the function name).

# Asynchronous fetching of configuration
config = await ag.ConfigManager.aget_from_registry(
app_slug="my-app",
# app_id="my-app-id", # you can also use `app_id`
variant_slug="my-variant-slug",
variant_version=2
)

print("Fetched configuration asynchronously:")
print(config)